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Abstract

We study nonlinear flutter phenomena in a system of two airfoils in close proximity in an ideal fluid. In particular, we

are interested in cases for which two aeroelastic instabilities are nearly critical simultaneously. Such Hopf–Hopf

interactions, in general, are capable of generating a rich variety of dynamic phenomena, behaviors that possibly can be

exploited to develop flow actuators. Our first task is to investigate the degree to which the double Hopf interactions are

prevalent in the physical system. Secondly, using tools of center manifolds and normal forms, we investigate the

richness of the dynamics in the two airfoil system. Analysis is facilitated by an effective reduced-order modeling effort.

r 2004 Published by Elsevier Ltd.

1. Introduction

Mathematically speaking, a traditional oscillatory flutter instability corresponds to a single complex conjugate pair of

eigenvalues of the linearized system crossing the imaginary axis transversely as a parameter (e.g., flow speed) varies. In

the terminology of nonlinear dynamical systems, this is a Hopf bifurcation. The term ‘‘double flutter’’ in the paper’s title

refers to aeroelastic instabilities for which two complex conjugate pairs of eigenvalues cross the imaginary axis (nearly)

simultaneously: Hopf–Hopf bifurcations. Chamara and Coller (2000) demonstrated that such coincident instabilities

exist in systems with two airfoils in close proximity. The configuration, depicted in Fig. 1, is the problem we continue to

pursue here. Double flutter is not limited to the two airfoil problem. Other instances include a single airfoil with elastic

control surface (Tang et al., 1998), and panel flutter (Dowell, 1975).

Double flutter interests us on several levels. The first is an intrinsic curiosity in nonlinear aeroelastic phenomena.

Hopf–Hopf interactions in general tend to yield rich dynamics: 132 distinct behaviors are entangled in the generic

cubic order normal form. Some subsets of these are likely to play important roles in the nonlinear interactions of

the two airfoils.

From a practical perspective, we are interested in the double flutter problem because the rich nonlinear dynamics

might provide a means for creating a new generation of passive or semi-active flow control actuators. The

Kelvin–Helmholtz instability and subsequent roll-up dynamics of the shear layer in the wake can provide an effective

means of mixing passive scalars and momentum. The airfoils and their wakes may also be used to interact with

separating shear layers. Whereas small, sinusoidally actuated, flaps have been used in the past to dramatically improve

pressure recovery in diffusers (McKinzie, 1991,1996), the natural limit cycle dynamics associated with aeroelastic

instability may provide a similar effect. However, instead of supplying energy to the controller, fluttering airfoil

actuators would extract their energy from the flow. In fact, the rich dynamics might provide a range of multi-frequency
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and pulse-like behaviors that have been demonstrated to be particularly effective in flow control problems (Parekh and

Glezer, 2000; Glezer 2000).

Hopf–Hopf bifurcations also occur in surge and rotating stall interactions in axial compressors (Coller, 2004), roll-

coupling instabilities of high angle of attack aircraft dynamics (Jahnke and Culick 1994), coupled chemical oscillators

(Wang and Nicolis, 1987), rotating shafts (Shaw and Shaw, 1989), and combustion instabilities due to coupling of

acoustic modes to heat release (Murray et al., 1997) to name just a few. Double flutter might provide a more practical

test-bed for developing generally applicable Hopf–Hopf case-seeking and identification techniques.

In this study, we shall seek answers to two general questions regarding double flutter in the two airfoil system. First,

we shall perform linear analyses to gain a feel for the prevalence or scarcity of double Hopf bifurcations. In the second

part, we investigate nonlinear phenomena that occur in the vicinity of the aeroelastic Hopf–Hopf bifurcations,

ascertaining which of the possible 132 behaviors actually occur in models of the physical system. Qualitative predictions

based on a reduced-order model are verified with high fidelity simulations.
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Nomenclature

Subscripts j denote quantities associated with the jth blade

Physical parameters

hj vertical displacement of elastic axis (positve upward)

aj airfoil pitch (positive nose up)

t time

bj half the airfoil chord

d blade spacing

r fluid density per unit depth

mj mass of airfoil

Ieaj
moment of inertia about elastic axis

�½khj1h þ khj2h
2 þ khj3h

3� restoring force of plunge spring

�½kaj1aþ kaj2a
2 þ kaj3a

3� restoring force of pitch spring

ohj
uncoupled natural plunge frequency ð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
khj1=m

q
Þ

oaj
uncoupled natural pitch frequency ð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kaj1=Ieaj

q
Þ

Vj potential function for restoring forces

Lj aerodynamic lift

Meaj
aerodynamic moment about elastic axis

Dimensionless parameters

bj chord ratio ð¼ bj=b1Þ
d̃ dimensionless blade spacing ð¼ d=b1Þ
h̃j normalized displacement airfoil displacement ð¼ hj=bjÞ
wjbj location of center of mass of airfoil aft of the elastic axis

xeaj
bj1 location of the elastic axis aft of the leading edge

t dimensionless time ð¼ oa1tÞ
dhj2 quadratic plunge spring coefficient ð¼ bkhj2=khj1Þ
dhj3 cubic plunge spring coefficient ð¼ b2khj3=khj1Þ
daj2 quadratic pitch spring coefficient ð¼ kaj2=kaj1Þ
daj3 cubic pitch spring coefficient ð¼ kaj3=kaj1Þ
Xj ratio of uncoupled natural frequency ð¼ ohj

=oaj
Þ

Yj interblade frequency ratio ð¼ oaj
=oa1 Þ

mj mass ratio ð¼ mj=prb2j Þ
raj

dimensionless radius of gyration ð¼ Ieaj
=mjb

2
j Þ

Ṽj dimensionless potential ð¼ Vj=kaj1Þ

Ũ dimensionless flow speed ð¼ U=b1oa1
Þ

L̃j dimensionless lift ð¼ Lj=prbjU
2Þ

M̃eaj
dimensionless moment about elastic axis ð¼ Meaj

=prU2Þ
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2. Modeling

In our study of double flutter, we shall consider a system of two airfoils elastically suspended in a two-dimensional,

nominally uniform flow of an inviscid and incompressible fluid. Each has two degrees of freedom: pitch and plunge.

They are coupled only through the fluid. An illustration is provided and several physical parameters are labeled in Fig.

1. While, in general, there may be stagger and the blades may be of different sizes, we shall only consider size ratio

b2 :¼ b2=b1 � 1; and zero stagger angle in this paper.

One may trivially create a Hopf–Hopf bifurcation by choosing identical airfoils with spacing, d̃; sufficiently large that
the blades are effectively uncoupled. However, since it is the dynamic interactions of the two oscillatory instabilities that

interest us, we choose the spacing relatively small so that there is strong aerodynamic coupling between the blades.

As in our previous nonlinear analysis of single blade flutter (Coller and Chamara, 2004), the tools of center manifolds

and normal forms we shall employ require that we represent the dynamics of the system as a relatively low-order system

of ordinary differential equations in the time domain. After scaling, we express the equations of motion as

h̃00j � wj cosðajÞa00j þ wj sinðajÞa0j2þ r2aj
Y 2

j

@Ṽj

@h̃j

¼
Ũ2

mjb
2
j

L̃j ;

� wj cosðajÞh̃00j þ r2aj
a00j þ r2aj

Y 2
j

@Ṽj

@aj

¼
Ũ2

mjb
2
j

M̃eaj
; ð1Þ

where the index j refers to the jth blade. Prime denotes differentiation with respect to dimensionless time, t ¼ oa1 t:
Other nondimensionalizations are listed in the nomenclature and depicted in Fig. 1.

As in Coller and Chamara (2004), we shall consider relatively small airfoil motions so that the aerodynamic lifts L̃j

and moments about the elastic axis M̃eaj
respond linearly to blade motions and their history. Consequently, the inertial

nonlinearities in Eq. (1) vanish: cosðaÞE1; sinðaÞa
02E0: This leaves the only nonlinearity in the elastic restoring forces

whose potential is given by

Ṽj ¼
X 2

j

r2aj

1

2
h̃2j þ

1

3
dh2h̃

3
j þ

1

4
dh3h̃

4
j

� �
þ
1

2
a2j þ

1

3
da2a3j þ

1

4
da3a4j : ð2Þ

The aerodynamic lifts and moments are the result of infinite-dimensional processes. Nonetheless, it is well known that

the forces may be well modelled with relatively low-order systems. As we describe below, we use rather simple lag

models to fit the step response and frequency response data from a high fidelity vortex lattice simulation.
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Fig. 1. The system of two airfoils.
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We express aerodynamic forces such as lift as a sum of two different types of terms: L̃j ¼ L̃
ðMÞ
j þ L̃

ðCÞ
j : The superscript

(M) denotes a set of ‘‘memoryless’’ terms, mostly of apparent mass origin, which are linear functions of accelerations.

The (C) superscript refers to terms that tend to be of circulatory type. For a single airfoil, Fung (1993) writes this

circulatory part as a Duhamel integral which convolves Wagner’s function, F, with W̃
0ðmÞ
3=4 ; the time derivative of a

component of upwash at the 3
4
-chord location due to blade motion. The superscript (m) denotes that component of

upwash due to blade motion in a uniform free-stream.

In the two airfoil problem, we mold the aerodynamic response into a similar formulation. One major difference,

however, is that, for the two airfoil problem, we know of no privileged location such as the 3
4
-chord point which conveys

all the necessary information. Therefore, we must consider the distribution of upwash over the entire blades. For flat

blades, which we shall consider here, the upwash on the jth blade induced by its motion is spatially linear:

W̃
ðmÞ
j ðx; tÞ ¼

W
ðmÞ
j ðx; tÞ

U
¼ �

bj

Ũ
h̃0j þ aj þ

bj

Ũ
ðx� xeaÞa

0
j

¼ �
bj

Ũ
h̃0j þ aj �

xeajbj

Ũ
a0j

� �
þ x

bj

Ũ
a0j

� �

¼ W̃Uj
ðtÞ þ x W̃Rj

ðtÞ: ð3Þ

In the last equalities, we decompose the upwash into spatially Uniform (U) and spatially Ramp-like (R) components.

Therefore, to model the ‘‘circulatory’’ part of the lift on one of the blades, we employ four Duhamel integrals:

L̃
ðCÞ
j ¼

Z t

�N

FL
Uj1

Ũðt� t0Þ
� 	 dW̃U1

dt0
dt0 þ

Z t

�N

FL
Uj2

Ũðt� t0Þ
� 	 dW̃U2

dt0
dt0

þ
Z t

�N

FL
Rj1

Ũðt� t0Þ
� 	 dW̃R1

dt0
dt0 þ

Z t

�N

FL
Rj2

Ũðt� t0Þ
� 	 dW̃R2

dt0
dt0; ð4Þ

which incorporate the uniform and ramp-like upwash inputs of both blades. The analogues, FL
�; to Wagner’s function

are step responses to the four inputs: W̃U1
; W̃U2

; W̃R1
; W̃R2

: The reader is referred to Coller and Chamara (2004) for an

explanation of the scaling Ũ within the step response functions.

To incorporate these effects into a low-order model, we represent the step response functions as finite sums of

exponentials:

FðLÞ
� ðtÞEfðLÞ

�N 1�
XNðLÞ
�

m¼1

K
ðLÞ
�me

sðLÞ�m
t

0
B@

1
CA: ð5Þ

As outlined in Coller and Chamara (2004), this allows us to re-express the integralZ t

�N

FðLÞ
� ðt� t0Þ

dW̃�
dt0

dt0EG
ðLÞ
�0 ðtÞ þ G

ðLÞ
�1 ðtÞ þ?þ G

ðLÞ
�NL

�
ðtÞ; ð6Þ

where

G
ðLÞ
�0 ðtÞ ¼ fðLÞ

�N 1�
XN ðLÞ
�

m¼1

K
ðLÞ
�m

0
B@

1
CAW̃�ðtÞ

and

G
ðLÞ
�j ðtÞ ¼ sðLÞ�j ŨðGðLÞ

�j ðtÞ � fðLÞ
�NK

ðLÞ
�j W̃�ðtÞÞ for j > 0:

Thus, the ‘‘circulatory’’ parts of the system are expressed as a combination of simple linear ordinary differential

equations.

Since the ‘‘memoryless’’ terms tend to represent apparent mass effects proportional to blade acceleration, we express

them in terms of time derivatives of upwash inputs:

L̃
ðMÞ
j ¼

C
ðLÞ
Uj1

Ũ
W̃ 0

U1
þ

C
ðLÞ
Uj2

Ũ
W̃ 0

U2
þ

C
ðLÞ
Rj1

Ũ
W̃ 0

R1
þ

C
ðLÞ
Rj2

Ũ
W̃ 0

R2
: ð7Þ

Observe that upon differentiating expressions for the uniform and ramp-like upwashes in Eq. (3) and substituting into

Eq. (7), the memoryless terms take the same form and scaling as that of the single airfoils (Coller and Chamara, 2004).

This feature is important since, as d̃-N; the two airfoil system becomes equivalent to two isolated airfoils.
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Coefficients K, s, f�N are obtained by fitting the step responses of the model to those of high fidelity vortex lattice

simulations. The high-order simulations are straightforward extensions of single airfoil simulations outlined in Coller

and Chamara (2004) which produced results nearly identical to isolated airfoil theory. Provided our previous

assumptions of ideal flow and linear aerodynamic response are approximately satisfied, the simulations should produce

a good representation of the physical system. Also outlined in Coller and Chamara (2004) is a procedure for fitting the

aerodynamic coefficients. The coefficients we obtain are tabulated in Appendix A.

To demonstrate how well our expansions (5) coincide with the true step responses, we show four typical cases in

Fig. 2. The step response curves due to the low-order model are dashed while those of the high fidelity simulation are

solid. It is difficult to distinguish them in the figure since they lie almost directly on top of each other.

The coefficients for the memoryless terms in Eq. (7) are determined by running the high fidelity simulation with the

input upwash modes individually varying sinusoidally in time. After subtracting the circulatory part of the lift from the

numerical lift data, it is a simple matter to fit the parameters. The procedure yields the same coefficients regardless of

the chosen forcing frequency.

In an identical manner, the aerodynamic moment can be modelled by linear, first-order ODEs that capture

‘‘circulatory’’ effects and linear combinations of accelerations representing ‘‘memoryless’’ effects. The coefficients and

exponents for the moment are also tabulated in Appendix A. They correspond to moments about the leading edge (le)

of the airfoil. To convert to a moment about the elastic axis (ea) as required by (1), one must perform the translation

M̃eaj
¼ M̃lej

þ xeaj
L̃j :

Upon substitution of the aerodynamic forces into the equations of motion (1), the system reaches closure. In state

space form, we express the equations generally as

x0 ¼ Bx þ FðxÞ: ð8Þ

The vector x contains eight mechanical states plus 38 fluid states, G#
�j : The quantity F(x) contains the structural

nonlinearities.

2.1. Flutter boundaries and existence of Hopf–Hopf bifurcations

For the fixed parameters listed in the caption, the shaded region in Fig. 3 corresponds to values of X2 and Ũ for which

the reduced-order model is locally stable. The circular symbols in the figure depict values of parameters for which our

high fidelity vortex lattice simulations predict a stability boundary. We see good agreement between the model and

simulation. These data are the same as that presented in Chamara and Coller (2000).

New data presented in the plot are the curves S0 and S1. One curve coincides with points in ðX2; ŨÞ space on which

one complex conjugate pair of eigenvalues is purely imaginary. The other curve coincides with another purely imaginary

pair of eigenvalues. Both curves constitute part of the flutter boundary. At locations where S0 and S1 intersect, two

oscillatory modes go unstable simultaneously and the system exhibits Hopf–Hopf instabilities.
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Fig. 2. Step responses for the lift due to the presence of uniform and ramp-like upwashes on each of the blades. While the responses

due to low-order model are dashed and those of the high fidelity simulation are solid, the curves lie almost directly on top of each other

and cannot be distinguished.
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3. Abundance of Hopf–Hopf instabilities

One of the issues left unresolved in our previous study is the degree to which double flutter is ‘‘prevalent’’ in the two-

airfoil systems. Before loosely defining what we mean by ‘‘prevalent,’’ we first note that S0 and S1 are each co-dimension

one. That is, in an n dimensional parameter space, the sets occupy a surfaces of dimension n�1. As illustrated

schematically in Fig. 4(a), the set of double Hopf bifurcations occur on S0-S1 and thus lie on a surface of dimension

n�2, co-dimension two. As one varies parameters continuously, therefore, it is with probability zero that one passes

directly through a Hopf–Hopf instability. When asking whether double flutter is ‘‘prevalent,’’ though, we are asking

whether the Hopf–Hopf curves are interwoven throughout parameter space like the ubiquitous ‘‘strings’’ in a stalk of

celery, or whether instances in slices of parameter space such as that shown in Fig. 3 rare.

For ra1 ¼ ra2 ¼ 0:5; xeaj
¼ 0:5; wj ¼ 0:2; mj ¼ 20:0; b2 ¼ 1; d̃ ¼ 0:5; and Y2 taking on several values between 1.0 and

0.5, we plot values of frequency ratios X1 and X2 in Fig. 5 for which double Hopf instabilities reside on the flutter

boundary. The curves in Fig. 5 represent projections of the intersections S0-S1; as indicated in Fig. 4, which lie on the
flutter boundary.

At the beginning of the sequence (Fig. 5(a)), the two airfoils are identical, and thus the curves are reflection symmetric

about the line X1=X2. However, upon perturbing Y2 from 1.0, we break the symmetry. Fig. 5(b) shows branches 1

and 3 approaching each other as Y2 is reduced slightly. Between Y2=0.96 and 0.83, branches 1 and 3 each split.

Sub-branches 1a and 3a then merge as depicted in Figs. 5(b) and (c). The entire sequence in Fig. 5 shows several

such mergings and splittings, including the genesis of branch 4 between Y2=0.57 and 0.54. The geometric interpretation

of the Hopf–Hopf curves in Fig. 4 as the intersection of criticality surfaces allows for straightforward explanation of

most splittings and mergings. However, an explanation of the gaps and branch terminations requires closer

examination.

In Fig. 6, we plot criticality surfaces Sj to explain the termination of branches 1b and 1a in Fig. 5(c). Three slices

through the parameter space at X1=0.8, 0.64, and 0.6 are investigated; the S0 curve has short dashes while S1 has long

dashes. Starting the discussion with slice (c), note that S0 and S1 intersect at three locations. The intersections are

labelled according to their branch numbers in Fig. 5(c).

At X1=0.64, shown in Fig. 6(b), all three intersections of S0 and S1 still exist. However, for low values of X2, the plot

clearly shows that S1 clearly folds back upon itself. As a consequence, the flutter boundary exhibits a discontinuous

jump. It is a standard cusp catastrophe (Poston and Stewart, 1978). Because of this, the intersection no longer lies on

the flutter boundary and branch 1a in Fig. 5(c) terminates.

The transition from X1=0.64 to 0.6 is even more dramatic. On branch 1b, the two pairs of eigenvalues approach each

other and then coalesce at the branch’s left-most termination point. It is similar to a Hamiltonian Hopf. As the

eigenvalues merge, some of the lobes of S0 and S1 switch places, detangling the previous intersection. As a result, branch

1b in Fig. 5(c) terminates. The apparent kink in the flutter boundary of slice (a) is a remnant of the previous Hopf–Hopf

instability, and gets smoothed out as one moves away from the termination point.
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Fig. 3. Criticality curves and flutter boundary predicted by reduced-order model. For comparison, circles are points on flutter

boundary as computed by high fidelity simulation. Parameters held fixed are w1 ¼ 0:1; X1 ¼ 2; m1 ¼ 20; xea1 ¼ 0:5; ra1 ¼ 0:5; w2 ¼ 0:2;

m2 ¼ 20; xea2 ¼ 0:1; ra2 ¼ 0:5; Y2 ¼ 2:0; %d ¼ 0:5; b2 ¼ 1:
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Fig. 4. (a) Hopf–Hopf bifurcations lie at the intersection of criticality surfaces S0 and S1. (b) Simple projection of Hopf–Hopf curve

onto (X1, X2) space.
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Fig. 5. Root locus of Hopf–Hopf instabilities as Y2 varies from 1.0 to 0.5.
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These two instances are typical of the mechanisms that cause Hopf–Hopf branches in Fig. 5 to suddenly terminate.

We find that co-dimension 2 slices of the parameter space such as shown in Fig. 5 often do show Hopf–Hopf branches.

Although not as dense as ‘‘strings’’ in a celery stalk, the double Hopf instabilities prevail in the two airfoil system.

4. Dynamical system with structural nonlinearities

Our next task is to study the nonlinear aspects of the two interacting aeroelastic instabilities. Dynamical systems

theory provides a set of tools than can be applied to the specific set of model Eqs. (1). However, before diving directly

into nonlinear analysis of Eqs. (1), we find it enlightening to first discuss the nonlinear interaction of two nearly

coincident Hopf bifurcations in a general setting, not specific to flutter.

4.1. Generic Hopf–Hopf phenomena

Provided mild genericity conditions hold, and that there are no low-order resonances, the ‘‘essential’’ dynamics of any

system within some neighborhood of two (and only two) nearly coincident Hopf bifurcations can be transformed into

the following set of differential equations (Coller and Chamara 2004; Guckenheimer and Holmes 1983):

’a0 ¼ a0ðl0 þ c00a0 %a0 þ c01a1 %a1Þ þ Oð5Þ;

’a1 ¼ a1ðl1 þ c10a0 %a0 þ c11a1 %a1Þ þ Oð5Þ: ð9Þ

All inessential terms are removed, leaving only those cubic terms necessary to characterize the leading nonlinear

dynamic behavior. Eqs. (9), collectively, are called the normal form of a Hopf–Hopf bifurcation. Dependent variables

a0 and a1 above are complex; thus the relatively simple set of equations possesses a four dimensional state space.

Parameters lj, cjk are also complex and their values depend upon parameters and other details of the original system.

One particularly attractive feature of the Hopf–Hopf normal form (9) is that the equations inherit an S1
S1 normal

form symmetry from the linear part of the flow (Elphick et al., 1987). As a consequence, when we write the dependent

variables in Eq. (9) as ak ¼ rk expðifkÞ; the ODEs for the magnitudes rk become

’rk ¼ rk½ReðlkÞ þReðck0Þr20 þReðck1Þr21� þ Oðr5Þ: ð10Þ

The important point to note here is that the amplitude equations are independent of the phases f0 and f1.

Because of the universality of the normal form and its applicability to a wide variety of problems, the dynamics of the

canonical system already have been studied. [See, for example, Coller (2004), Guckenheimer and Holmes (1983).] A

road map of bifurcations and dynamic phenomena has been created, and one can apply these results to new problems.

To briefly outline the Hopf–Hopf normal form dynamics, we rewrite the equations once again:

’r0 ¼ r0ðm0 � r20 þ br21Þ;

’r1 ¼ r1ðm1 � cr20 þ dr21Þ: ð11Þ

Fifth-order terms have been truncated. The dependent variables r0 and r1 above are scaled versions of the amplitudes r0
and r1 : rj ¼ rj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðcjjÞ

p
: Necessarily, then, the coefficient d is either +1 or �1. To get the coefficient of the r20r1 term in

the first equation of Eq. (11) to be �1, it might be necessary to reverse time. This is only for purposes of efficient

taxonomy. By keeping track of a time reversal, it is a simple matter to reverse arrows on solution trajectories in the last

stage of the analysis if necessary.
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To construct the Hopf–Hopf normal form from a set of differential equations, one first chooses system parameters so

that both oscillatory instabilities are critical simultaneously. Then, one performs a series of coordinate transformations

that accomplishes a center manifold reduction and removes all nonlinear terms except those in Eq. (9). Because of the

double criticality, the real part of both l0 and l1 are identically zero. Equivalently, m0=m1�0 in Eq. (11). Fig. 7 shows

all possible phase portraits for the scaled normal form amplitude equations (11) corresponding to co-dimension two

degeneracies m0=m1=0. In all, the lines r0=0 and r1=0 are invariant. Therefore, the portraits lie in the positive

quadrant r0, r1X0. We label the portraits with letters A through K. The dotted and dashed curves within the b, c, and d

parameter space are the boundaries which separate the different types of portraits.

If we embed system parameters into the center manifold (Wiggins, 1990), then we can formally perturb the system off

the double instability, and consequently perturb the normal form off of the cases with m0=m1=0. When we let the linear

coefficients mj in Eq. (11) be nonzero, there are 11 families and a handful of sub-families of phase portraits to consider.

The locations of these families within the b, c, and d parameter space are labeled with roman numerals in Fig. 8.

The individual phase portraits for all the families are shown in Fig. 9. There are a total of 66 nondegenerate cases one

obtains from Eq. (11). However, if we account for possible time reversals necessary to transform Eq. (10) to Eq. (11), we

get an additional 66 portraits, identical to those shown in Fig. 9, except the sense of the arrows is reversed. While some

of the portraits in Fig. 9 may appear similar to others, they occur through different sequences of bifurcations and have

different neighboring behaviors. Therefore, we consider them distinct. Thus, there exists an enormous wealth of

dynamic possibilities that may emerge from Hopf–Hopf instabilities.

4.2. A hypothetical bifurcation sequence

To illustrate how a sequence of portraits from Fig. 9 might appear in a double flutter problem, suppose that we

choose parameters identical to those used to generate Fig. 3, and set X2 just slightly greater than the double flutter value
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of 1.315267. Fig. 10(a) zooms in on the left-most Hopf–Hopf point of Fig. 3. As we continuously increase the flow speed

Ũ; the system follows the vertical line in the figure.

Suppose further, that the structural nonlinearities of the double flutter problem are such that coefficients b and c in

the scaled normal form amplitude equations (11) are negative, and d=�1. Therefore, the phase portraits for the double
flutter system belongs to either family Ia or Ib, depending on whether bco1 or bc>1, respectively.

If Ũ is chosen sufficiently small, the double flutter system is stable and the corresponding values of m0 and m1 in
Eq. (11) are both negative. Therefore, regardless of whether the normal form resides in family Ia or Ib, this small

value of Ũ leads to Portrait 1 shown in Fig. 10(c). In addition to being stable, the point r0=r1=0 is a global attractor

for the cubic order normal form. When r0 and r1 are zero simultaneously, both oscillation amplitudes are zero, and

hence the airfoils sit motionless in their undeflected states.

As we increase the flow speed Ũ; the system crosses the criticality curve S1. Therefore, m1 goes from negative to positive

accordingly, and the normal form portraits switch from case 1 to case 2. In Portrait 2, the point r0=r1=0 is still an

equilibrium, as it is in all portraits of Fig. 9. This time, however, the equilibrium is unstable in the r1 direction; it undergoes

a pitchfork bifurcation which gives birth to another (stable) equilibrium on the r1-axis. We refer to this new equilibrium on

the r1-axis as a relative equilibrium since it is only an equilibrium for the amplitude equation. In Eqs. (9), or in the original

state variables, it corresponds to a stable periodic orbit that results from a supercritical Hopf bifurcation.

Increasing Ũ still further, m0 becomes positive as the aeroelastic system crosses S0. The scaled normal form amplitude

equations yield Portrait 3. Another relative equilibrium appears, this one on the r0-axis. The new equilibrium is

unstable, and nearly all trajectories are still attracted to the relative equilibrium on the r1-axis. In the full system, we

would expect solutions to be attracted to a single oscillation mode.

The next bifurcation, as Ũ increases, depends on whether the system lies within Family Ia or Ib. If bco1 (Family Ia),

then the relative equilibrium on the r1-axis loses stability, giving birth to a new equilibrium for which both r0 and r1 are

nonzero as shown in Portrait 5. This new relative equilibrium corresponds to a two-frequency oscillation involving both

marginal modes. The new mixed-mode equilibrium is locally stable and it attracts almost all solutions of (11).

If bc>1, then the bifurcation following Portrait 3 gives way to Portrait 4. In this case, the bifurcation alters the

stability of the relative equilibrium on the r0-axis. It gains stability as it spawns an unstable, mixed-mode, relative

equilibrium of saddle type. Therefore, the relative equilibria on the r0 and on the r1 axes both attract nearby solutions.

The mixed mode equilibrium that forms in the process is of saddle type as depicted in Portrait 4 of Fig. 10(c). Its stable

manifold serves as a separatrix which divides the amplitude space into regions for which solutions get attracted to one

single-mode relative equilibrium or the other.

Other potential bifurcation sequences in Fig. 9 can be traced in a similar manner.

4.3. Analysis of the aeroelastic system

Our next task is to determine which of the phase portraits actually appear in the two-airfoil aeroelastic system. Given

that there are 132 possibilities in the generic cubic order Hopf–Hopf bifurcation, it would be interesting to investigate

how many of these occur.
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4.3.1. Transformations

To answer these questions, we must transform the equations of motion (1) into normal form. The procedure is

outlined in Coller and Chamara (2004) in the context of a single blade flutter problem. A more general theoretical

discussion may be found in Guckenheimer and Holmes (1983).

The first step is to decompose and linearly transform the state equations (8) into the form

x0
c ¼ Bcxc þ f ðxc; xsÞ; ð12Þ

x0
s ¼ Bsxs þ gðxc; xsÞ: ð13Þ

The symbol xs denotes the states that lie in the stable eigenspace. Therefore, the eigenvalues of Bs all have negative

real parts.

Meanwhile, the matrix Bc takes the form

Bc ¼

0 �o0 0 0 0 ? 0

o0 0 0 0 0 ? 0

0 0 0 �o1 0 ? 0

0 0 o1 0 0 ? 0

0 0 0 0 0 ? 0

^ ^ ^ ^ ^ & ^

0 0 0 0 0 ? 0

2
666666666664

3
777777777775

and f ðxc; xsÞ ¼

f0rðxc; xsÞ

f0iðxc; xsÞ

f1rðxc; xsÞ

f1iðxc; xsÞ

0

^

0

2
666666666664

3
777777777775

:

The first four elements of xc are the states on the center eigenspace. The remaining elements of xc are bifurcation

parameters that have been embedded in the center eigenspace as described in Wiggins (1990).

Separating the stable and marginally stable parts of the system allows us to apply the center manifold theorem

(Guckenheimer and Holmes, 1983), and thus we may express the stable states explicitly in terms of center states:

xs=h(xc). Substituting the center manifold expression into the first four equations of Eq. (12), and expressing them in

complex form ðz0 ¼ xc1 þ ixc2 ; z1 ¼ xc3 þ ixc4 Þ; we arrive at equations of the form

’z0 ¼ l0z0 þ f0ðz0; %z0; z1; %z1Þ;

’z1 ¼ l1z1 þ f1ðz0; %z0; z1; %z1Þ; ð14Þ

which represent the dynamics of the system on the four-dimensional center manifold.

Finally, to transform Eq. (14) into normal form (9), it is straightforward to apply the formulae from Coller (2004),

reproduced in Appendix B. Therefore, for a given system, or family of systems, it is possible to make the

transformations and then ‘‘look up’’ the corresponding qualitative phase portraits from Figs. 8 and 9.

4.3.2. Abundance of possibilities

To answer the second question posed at the beginning of Section 4.3, how many of the generic Hopf–Hopf

phenomena exist in the two-airfoil problem, we consider a physical system with only cubic nonlinearities. As outlined in

Section 4.1, we start with system parameters such that the system possesses a co-dimension two double Hopf instability.

As demonstrated in Coller and Chamara (2004), the center manifold in such cases plays no role in the cubic order

normal form. Eq. (14) is obtained via simple linear transformation. The nonlinear parts, f0 and f1, are cubic in zj ; %zj :
Therefore, the normal form coefficients in Eq. (9) are particularly simple to calculate:

c00 ¼
1

2

@3f0
@z20@%z0

����
0

; c01 ¼
@3f0

@z0 @z1 @%z1

����
0

;

c10 ¼
@3f1

@z0 @%z0 @z1

����
0

; c11 ¼
1

2

@3f1
@z21@%z1

����
0

: ð15Þ

The right-hand sides of the expressions in Eq. (15) are linear combinations of the structural coefficients

dh13; da13; dh23; and da23; and we denote by M the linear mapping M : ðdh13; da13; dh23; da23Þ/ðc00; c01; c10; c11Þ: In the

absence of any degeneracies in Eq. (15), M will be invertible. Therefore, it is possible to choose the structural

coefficients to achieve any combination of cubic normal form coefficients and hence achieve any combination of the

coefficients b, c, and d in Eq. (11). Therefore, all eleven families and sub-families of phase portraits enumerated in Fig. 8

are possible.

By perturbing system parameters such as Ũ;Y2; mj ; xeaj
;Xj ; and raj

that directly affect the linearization, it is

possible to independently perturb the coefficients m0 and m1 in Eq. (11) while altering coefficients b, c, and d only
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slightly. Therefore, we conclude that all 132 nondegenerate cases of Fig. 9 are generically possible in a Hopf–Hopf,

double flutter interaction.

Furthermore, we note that the quadratic structural coefficients, dh12; da12; dh22; da22; provide additional freedom in the

choice of normal form coefficients b, c, and d. Therefore, to achieve a desired case, the extra freedom might allow for

more practical choices of system parameters.

4.4. Numerical comparisons

To verify that the normal form analysis correctly predicts the dynamics the physical system, we consider in more

detail the double Hopf instability discussed hypothetically in Section 4.2. At the left-most double Hopf instability in

Fig. 3 (X2=1.315267), the frequencies associated with the two critical modes are 1.95 and 2.96. Therefore, there are no

frequency resonances below fifth order and the normal form is that presented in Eq. (9). Furthermore, the bifurcation is

not degenerate so the neighboring systems are capable of exhibiting all 132 Hopf–Hopf interactions. In fact, the

hypothetical sequences outlined in Section 4.2 are possible.

4.4.1. Generating portrait 5

In the first two numerical examples, we choose parameters for which the normal form analysis predicts the more

interesting cases from Fig. 10. Our normal form analysis predicts that, for parameters listed in the caption of Fig. 11,

the system exhibits the phenomena of Portrait 5. It is a case for which the only attracting solution is the mixed-mode

relative equilibrium corresponding to a combination of two oscillations. Fig. 11(a) shows time traces of plunge of one of

the blades, computed from numerical simulations of the reduced-order model equations. In agreement with the phase

portrait, a small initial condition initially grows; then, the oscillation amplitude plateaus. Since the growth rate is much

slower than the time scale of the oscillations, it is difficult to discern the wave form of the plot. However, we also show
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Fourier transforms of the h̃1 and h̃2 signals in the figure. They clearly indicate the presence of two incommensurate

dominant harmonics, consistent with the stable mixed-mode relative equilibrium in the phase portrait.

To demonstrate that the Portrait 5 behavior in Fig. 11 is not an artifact of our modeling assumptions, we

show time traces and Fourier spectra generated from a high fidelity vortex lattice simulation in Fig. 12.

Parameter values are the same as those used to generate Fig. 11. It is clear that the reduced-order model

and high fidelity simulation agree and they both exhibit phenomena of Portrait 5 as predicted by the normal form

analysis.

4.4.2. Generating portrait 4

In our second numerical example, we choose system parameters for which the normal form predicts Portrait 4.

Fig. 13 shows time traces and spectra for the new system whose parameters are listed in the caption. As discussed

in Section 4.2, the case posses a mixed-mode relative equilibrium of saddle type and two locally stable, single-

mode, relative equilibria. The stable manifold of the saddle serves as a separatrix. In Fig. 13, we show time traces

and spectra corresponding to initial conditions lying on opposite sides of the separatrix. In part (a), the initial

condition sits just below the separatrix. As indicated in the accompanying phase portrait, the corresponding solution

approaches the mixed mode equilibrium and then turns toward the single-frequency, stable, relative equilibrium on the

r0-axis. The initial condition in Fig. 13(b) lies just above the separatrix. Its corresponding solution approaches

the mixed mode equilibrium and then turns toward the stable, single-frequency equilibrium on the r1-axis. The

Fourier transforms show that there is only one base harmonic in each of the figures, and the frequencies

differ.

As before, in Fig. 14 we present similar results from high fidelity vortex lattice simulations. Results demonstrate that

theoretical predictions capture the behavior of the full system. Also, the comparison provides further validation of the

modeling effort described previously.

4.4.3. Interesting three-frequency phenomena

Before presenting the final numerical example, we note that mixed-mode equilibria occur in many of the portraits of

Fig. 9. In particular, we note instances (i.e., Portrait 44–43, Portrait 60–59, Portrait 58–57, and Portrait 56–55) in which

the mixed mode equilibrium changes from a spiral sink to a spiral source. These are instances of tertiary Hopf

bifurcation. They are neither subcritical nor supercritical in the cubic order normal form, since it is Hamiltonian at

criticality (Cases d:1, d:4, d:3, and d:2, respectively) (Guckenheimer and Holmes, 1983). However, the cubic order
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normal form is obtained by truncation. In general, the discarded quintic terms would cause the tertiary Hopf

bifurcation to be either subcritical or supercritical.

As stated before, the mixed-mode equilibrium is associated with two oscillations and generally two incommensurate

frequencies. If the tertiary Hopf bifurcation happens to be supercritical, then there are parameters for which

there exists a stable limit cycle within the (r0, r1) amplitude space as shown on the right side of Fig. 15. It is a

dynamic mechanism through which one gets a third oscillation and observes a third base frequency in the physical

system.

For our third numerical example, we went hunting for such a case and found a family of them within a thin wedge of

Portrait 57 in Family VIIc. Other such wedges probably exist; we did not search for them. In Fig. 15(a), we plot the time

trace of one of the plunge variables for the reduced-order model. Fig. 15(b) shows an analogous plot from the high

fidelity simulation. The most notable feature is the relatively slow modulation in oscillation amplitude. This is precisely

the effect of the limit cycle in the phase portrait of Fig. 15.

Because the region in which the three-frequency behavior occurs is narrow, the parameters which produced the

phenomenon in the high fidelity simulation are slightly different than those used in integrating the reduced-order model.

Using a simple trial and error procedure, guided by the qualitative road map provided by the bifurcation diagram, it

was simple to find.
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Fig. 15. (a) Three-frequency oscillation with modulating amplitude computed with reduced-order model. Parameters are the same as

those used in Fig. 11 except w1 ¼ 0:10001; w2 ¼ 0:20003; da12 ¼ 10:0; dh12 ¼ 10:0; da22 ¼ 10:0; dh22 ¼ 10:0; da13 ¼ 100:0; dh13 ¼ 100:1;
da23 ¼ 90:0; dh23 ¼ 218:35: (b) Analogous plot except for high fidelity simulation. Parameters are the same except w1 ¼ 0:10015;
w2 ¼ 0:20006:
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5. Conclusions

The goals outlined in the Introduction have been accomplished. We have demonstrated that Hopf–Hopf interactions

in the double flutter problem are abundant. Moreover, they are dynamically rich, typically exhibiting all 132 generic

phenomena of the cubic order normal form.

The reduced-order modeling effort outlined herein has, once again, demonstrated its utility. The models we

derive possess an important feature that makes center-manifold/normal-form analysis possible. As required

by the analytical techniques, only that part of the spectrum (four eigenvalues) directly involved with the

Hopf–Hopf interaction can lie near the imaginary axis. The rest of the spectrum must be safely separated. We remark

that many vortex lattice-based eigenmode approaches (Hall, 1994) or other approaches based on Eulerian fluid modes

(Hall et al., 2000) do not possess this property. Modes in these approaches mostly resolve fluid variables: vorticity that

gets carried downstream without decay. Thus, such modeling approaches yield a dense eigenvalue spectrum near the

imaginary axis.

Continuing the research presented here, we are now investigating the possibility of exploiting the rich

nonlinear double flutter phenomena as the primary mechanisms for designing semi-passive flow actuators. This

work is also the stepping stone for studying the largely unexplored nonlinear nature of cascade flutter in which

multiple modes typically go unstable at roughly the same time. We expect the dynamic behavior there to be at least

as rich.

Appendix A. Step response coefficients

Tabulated in Table 1 are the coefficients that go into the empirical step response functions in Eq. (5) and

analogous responses for the moment about the leading edge. The situation corresponds to identical airfoils (b2=1),

and zero stagger. Dimensionless blade spacing is d̃ ¼ 0:5: Because of symmetry of the problem, F#
�11

¼ F#
�22

; and

F#
�12

¼ F#
�21

:

Other step responses are expressed as

FL
R11

¼ 1:4418FL
U11

� 0:0317;

FM
U11

¼ � 0:5745FL
U11

þ 0:0133;

FM
R11

¼ � 0:8064FL
U11

� 0:5572: ðA:1Þ

Appendix B. Formulae for normal form coefficients

Rewriting Eq. (14) as

’z0 ¼ l0z0 þ pð0Þðz0; %z0; z1; %z1Þ;

’z1 ¼ l1z1 þ pð1Þðz0; %z0; z1; %z1Þ;
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Table 1

Coefficients for step response functions in Eq. (5)

Case f#
�N K#

�i s#�i

FðLÞ
U11

2.844 0.429, 0.05, 0.0061 �0.36, �0.0674, �0.00344

FðLÞ
U12

�1.568 0.6533, �0.1225, �0.05268 �0.366, �0.1627, �0.03168

FðLÞ
R12

�2.091 �0.044, 0.684, �0.1, �0.062 �233.6, �0.397, �0.149, �0.0316

FðMÞ
U12

1.045 �0.03603, 0.5763, �0.0527 �1.3465, �0.42392, �0.43297

FðMÞ
R12

1.5685 �0.1417, 0.6316, �0.05026 �0.7977, �0.465�0.03945
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the normal form coefficients are then given by

c00 ¼
p
ð0Þ
2100

2
�

p
ð0Þ
0101 %p

ð1Þ
0200

2%l1 � 4l0
�

p
ð0Þ
1010p

ð1Þ
1100

l1 � l0 � %l0
þ

p
ð0Þ
1100p

ð0Þ
2000

2l0
þ

p
ð0Þ
1100 %p

ð0Þ
1100

l0

þ
p
ð0Þ
2000 %p

ð0Þ
1100

%l0
�

p
ð0Þ
1001 %p

ð1Þ
1100

%l1 � l0 � %l0
�

p
ð0Þ
0200 %p

ð0Þ
0200

2%l0 � 4l0
�

p
ð0Þ
0110p

ð1Þ
2000

2l1 � 4l0
;

c01 ¼ p
ð0Þ
1011 þ

p
ð0Þ
0011 %p

ð1Þ
0110

l0
þ

p
ð0Þ
0011p

ð1Þ
1010

l0
�

p
ð0Þ
0020p

ð1Þ
1001

l1 � %l1 � l0
�

p
ð0Þ
1100 %p

ð0Þ
0011

%l0 � l1 � %l1

þ
p
ð0Þ
1010p

ð0Þ
1001

%l1
�

p
ð0Þ
2000p

ð0Þ
0011

l0 � l1 � %l1
�

p
ð0Þ
0002 %p

ð1Þ
0101

%l1 � l1 � l0
þ

p
ð0Þ
1010p

ð1Þ
0011

%l1

�
p
ð0Þ
0101 %p

ð0Þ
0101

%l0 � l0 � l1
þ

p
ð0Þ
0110 %p

ð0Þ
0110

%l0 � l0 � %l1
þ

p
ð0Þ
0110p

ð0Þ
1010

l1
þ

p
ð0Þ
1001 %p

ð1Þ
0011

l1
; ðB:1Þ

where p
ðiÞ
klmn ¼ @kþlþmþnpðiÞ=@kz0@l %z0@mz1@n %z1 and values of z0; %z0; z1; %z1 are taken zero. Coefficients c10 and c11 can be

found using the symmetry ðz0; %z0; z1; %z1Þ/ððz1; %z1; z0; %z0Þ:
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